Banzai Cloud Logo Close
Home Products Benefits Blog Company Contact

Kafka disaster recovery on Kubernetes using MirrorMaker2

Author Toader Sebastian

In one of the earlier Kafka disaster recovery on Kubernetes with CSI post we discussed how brokers of an Apache Kafka clusters can be backed up and restored leveraging Kubernetes volume snapshots. While this solution provides a good enough disaster recovery option (and a super quick recovery), it doesn’t help when the entire Kubernetes cluster hosting the Kafka cluster is lost. In this post, we show you how to:

  • back up a Kafka cluster to a remote Kafka cluster running on a separate Kubernetes cluster, and also how to
  • recover the lost Kafka cluster with Supertubes.

Check out Supertubes in action on your own clusters:

Register for an evaluation version and run a simple install command!

curl https://getsupertubes.sh | sh
supertubes install -a --no-demo-cluster --kubeconfig <path-to-k8s-cluster-kubeconfig-file>

or read the documentation for details.

Take a look at some of the Kafka features that we’ve automated and simplified through Supertubes and the Kafka operator, which we’ve already blogged about:

tl;dr 🔗︎

MirrorMaker v1’s capability of cross-cluster replication has been used in the past for Kafka cluster disaster recovery. MirrorMaker v1 had a couple of limitations that the Kafka community had addressed in the next version of MirrorMaker (MirrorMaker2), which was released with Apache Kafka 2.4.0. MirrorMaker2 leverages the Connect framework to replicate topics between Kafka clusters. It includes several new features, including:

  • Both topics and consumer groups are replicated
  • Topic configuration and ACLs are replicated
  • Cross-cluster offsets are synchronized
  • Partitioning is preserved

Supertubes is using MirrorMaker2 to set up cross-cluster replication between remote Kafka clusters and recover a lost Kafka cluster from a remote Kafka cluster. It deploys a MirrorMaker2 instance for each Kafka cluster into the same namespace where the Kafka cluster resides. The MirrorMaker2 instance is launched and it acts as a:

  • Producer targeting the Kafka cluster running on the same Kubernetes cluster and namespace (it is recommended to have MirrorMaker2 deployed close to the target Kafka cluster)
  • Consumer for the remote Kafka clusters

Cross-cluster replication

Supertubes expects a descriptor file in yaml or json format that describes the topology of the Kafka clusters and the MirrorMaker2 replication topology:

supertubes mm2 deploy -f <path-to-mm2-deployment-descriptor>
# list of Kubernetes config file paths of clusters hosting our Kafka clusters that we want to make MM2 deployments aware of
kubernetesConfigs:
- # path-to-the-kubeconfig
- # path-to-the-kubeconfig
…
# list of Kafka clusters to make MM2 deployments aware of
kafkaClusters:
- namespace: # kubernetes namespace hosting the Kafka cluster, defaults to 'kafka'
  name: # Kafka cluster name, defaults to 'kafka'
  kubernetesConfigContext: # name of Kubernetes configuration context as defined in the kubeconfig files which references the Kubernetes cluster hosting the Kafka cluster. If not specified, the default context is used.
  alias: # kafka cluster alias by which MM2 refers to this Kafka cluster as (e.g. kafka1). If not provided it defaults to '${kubernetesConfigContext}_${namespace}_${name}'
  internalListenerName: # name of the internal listener which local MM2 instances access this Kafka cluster through
  externalListenerName: # name of the external listener which remote MM2 instances access this Kafka cluster through
mirrorMaker2Spec:
  kafkaHeapOpts: # heap opts setting for MirrorMaker2, defaults to -Xms256M -Xmx2G
  resources:
  nodeSelector:
  tolerations:
  affinity:

mirrorMaker2Properties: |
  # replication topologies and flows, mm2 config, etc.

  # two way replication between 3 Kafka clusters
  kafka1->kafka2.enabled=true
  kafka1->kafka3.enabled=true

  kafka2->kafka1.enabled=true
  kafka2->kafka3.enabled=true

  kafka3->kafka1.enabled=true
  kafka3->kafka2.enabled=true

Supertubes automatically generates the MirrorMaker2 configuration for each MirrorMaker2 instance (MirrorMaker2 has its proprietary configuration format). Supertubes maintains the Kafka servers section of the file, while the replication flows and other MirrorMaker2 settings are populated from the mirrorMaker2Properties provided by the user. The generated MirrorMaker2 config file is as follows:

# maintained by supertubes
clusters: kafka1, kafka2, kafka3, ...

kafka1.bootstrap.servers=... # internal kafka bootstrap servers URL if MM2 is on the same Kubernetes cluster as Kafka cluster, otherwise external kafka bootstrap servers URL
kafka2.bootstrap.servers=... # internal kafka bootstrap servers URL if MM2 is on the same Kubernetes cluster as Kafka cluster, otherwise external kafka bootstrap servers URL
kafka3.bootstrap.servers=... # internal kafka bootstrap servers URL if MM2 is on the same Kubernetes cluster as Kafka cluster, otherwise external kafka bootstrap servers URL

# user provided mm2 settings
kafka1->kafka2.enabled=true
kafka1->kafka3.enabled=true

kafka2->kafka1.enabled=true
kafka2->kafka3.enabled=true

kafka3->kafka1.enabled=true
kafka3->kafka2.enabled=true

Note: it is recommended to keep the replication flow settings the same across all MirrorMaker2 instances to avoid omitting topics from cross-cluster replication.

In the example above, MirrorMaker2 will replicate topics from kafka1 to kafka2 and the other way around:

  • topics from kafka1 are replicated to kafka2 as kafka1.{topic-name}, similarly
  • topics from kafka2 are replicated to kafka1 as kafka2.{topic-name}.

As an example, if we have a topic named topic1 on both Kafka clusters, then:

  • kafka1 will have topic1 and kafka2.topic1, and
  • kafka2 will have topic1 and kafka2.topic1, respectively.

Bidirectional cross-cluster replication happens similarly between kafka2 <-> kafka3 and kafka1 <-> kafka3.

Losing and recovering a cluster 🔗︎

In the event of losing the Kubernetes cluster that hosts our Kafka cluster:

  1. You must provision a new Kubernetes cluster. This Kubernetes cluster can be automatically provided by Pipeline across 5 clouds or on-premises.

  2. Create a new Kafka cluster as a replacement for the lost Kafka cluster (it is as simple as supertubes cluster create). While the new cluster is provisioned, client applications (consumers and producers) can be directed to the remaining Kafka clusters.

  3. From the perspective of MirrorMaker2, the new (replacement) Kafka cluster must get a new alias and should not reuse the alias of the lost Kafka cluster, because MirrorMaker2 doesn’t replicate topics that are prefixed with the name of a cluster alias.

  4. Update the MirrorMaker2 descriptor file to reflect the new Kubernetes cluster and Kafka cluster alias as well.

  5. Run the following command with the modified descriptor file:

    $ supertubes mm2 deploy -f <path-to-mm2-deployment-descriptor>
    
  6. Supertubes updates all MirrorMaker2 instances.

  7. The new Kafka cluster starts catching up from the other clusters.

Showtime 🔗︎

Let’s go through an example to see how this works.

Create two Kubernetes clusters 🔗︎

We create two PKE clusters using our hybrid cloud container management platform, Banzai Cloud Pipeline:

  • one on AWS in the eu-north-1(Stockholm) region, and
  • one on Azure in the westeurope region.

These two PKE clusters are named as pke-aws-kafka-eun1 and pke-azure-kafka-weu, respectively.

PKE is Banzai Cloud’s CNCF certified Kubernetes distribution.

Install Supertubes on both Kubernetes clusters 🔗︎

We want to ensure that our Kafka clusters are accessed through TLS. Instead of getting into the cumbersome task of configuring TLS for each component, Supertubes runs Kafka inside an Istio service mesh on each Kubernetes cluster, and let Istio take care of TLS at the networking layer for us.

We have our own automated and operationalized service mesh product built on Istio, called Backyards

Supertubes sets up an Istio service mesh for our Kafka components automatically, all you need is to provide a common root certificate for the Istio deployments.

supertubes install --root-cert=root-cert.pem --ca-cert=ca-cert.pem --ca-key=ca-key.pem -a --no-demo-cluster -c {pke-aws-kafka-eun1-kubeconfig.yaml}

supertubes install --root-cert=root-cert.pem --ca-cert=ca-cert.pem --ca-key=ca-key.pem -a --no-demo-cluster -c {pke-azure-kafka-weu-kubeconfig.yaml}

If you don’t have root and intermediate CA certificates at hand, you can use this tool to generate self-signed certificates quickly.

Create Kafka clusters on both Kubernetes clusters 🔗︎

supertubes cluster create --namespace kafka -c {pke-aws-kafka-eun1-kubeconfig.yaml} -f https://raw.githubusercontent.com/banzaicloud/kafka-operator/master/config/samples/kafkacluster-with-istio.yaml
supertubes cluster create --namespace kafka -c {pke-azure-kafka-weu-kubeconfig.yaml} -f https://raw.githubusercontent.com/banzaicloud/kafka-operator/master/config/samples/kafkacluster-with-istio.yaml

Wait until the Kafka clusters becomes operational:

supertubes cluster get --namespace kafka --kafka-cluster kafka -c {pke-aws-kafka-eun1-kubeconfig.yaml}
Namespace  Name   State           Image                         Alerts  Cruise Control Topic Status  Rolling Upgrade Errors  Rolling Upgrade Last Success
kafka      kafka  ClusterRunning  banzaicloud/kafka:2.13-2.4.0  0       CruiseControlTopicReady      0                       2020-03-04 14:07:36

Create a test topic 🔗︎

Create a topic named testtopic on both Kafka clusters:

supertubes cluster topic create --namespace kafka --kafka-cluster kafka -c {pke-aws-kafka-eun1-kubeconfig.yaml} -f -<<EOF
apiVersion: kafka.banzaicloud.io/v1alpha1
kind: KafkaTopic
metadata:
  name: testtopic
spec:
  name: testtopic
  partitions: 3
  replicationFactor: 2
  config:
    "retention.ms": "28800000"
    "cleanup.policy": "delete"
EOF
supertubes cluster topic create --namespace kafka --kafka-cluster kafka -c {pke-azure-kafka-weu-kubeconfig.yaml}  -f -<<EOF
apiVersion: kafka.banzaicloud.io/v1alpha1
kind: KafkaTopic
metadata:
  name: testtopic
spec:
  name: testtopic
  partitions: 3
  replicationFactor: 2
  config:
    "retention.ms": "28800000"
    "cleanup.policy": "delete"
EOF

Enable cross-cluster replication with MirrorMaker2 🔗︎

In the descriptor file we are going to reference the Kafka cluster running on pke-aws-kafka-eun1 as kafka1 and kafka2 the one running on pke-azure-kafka-weu.

supertubes mm2 deploy -f -<<EOF
# list of Kubernetes config file paths of clusters hosting our Kafka clusters that we want to make MM2 deployments aware of
kubernetesConfigs:
  - {pke-aws-kafka-eun1-kubeconfig.yaml}
  - {pke-azure-kafka-weu-kubeconfig.yaml}

# list of Kafka clusters to make MM2 deployments aware of
kafkaClusters:
  - namespace: kafka
    name: kafka
    kubernetesConfigContext: kubernetes-admin@pke-aws-kafka-eun1  # the context from {pke-aws-kafka-eun1-kubeconfig.yaml}
    alias: kafka1 # name MM2 refers to this Kafka cluster to
    internalListenerName: internal # name of the Kafka cluster internal listener local MM2 instance to use
    externalListenerName: external # name of the Kafka cluster external listener remote MM2 instances to use
  - namespace: kafka
    name: kafka
    kubernetesConfigContext: kubernetes-admin@pke-azure-kafka-weu # the context from {pke-azure-kafka-weu-kubeconfig.yaml}
    alias: kafka2 # name MM2 refers to this Kafka cluster to
    internalListenerName: internal # name of the Kafka cluster internal listener local MM2 instance to use
    externalListenerName: external # name of the Kafka cluster external listener remote MM2 instances to use

mirrorMaker2Properties: |-
  # replication topologies and flows, mm2 config, etc.
  kafka1->kafka2.enabled=true
  kafka2->kafka1.enabled=true

   # we don't have ACLs set so skip replicating them
  sync.topic.acls.enabled=false
EOF

Write messages to testtopic on both clusters 🔗︎

Remember that our Kafka clusters run inside Istio Mesh with TLS enabled. This means we need a client certificate to be able to write messages to our testtopic topic. In order to get a client certificate, run:

supertubes istio certificate generate-client-certificate -c {pke-aws-kafka-eun1-kubeconfig.yaml} > cert-data.json

The returned json contains the following fields in base64-encoded format:

  • client-cert.pem - the client certificate
  • client-key.pem - the client key
  • ca-cert.pem - the CA certificate
  • root-cert.pem - the root certificate
  • cert-chain.pem - the certificate chain containing root and CA certificate

Find the public addresses through which the Kafka cluster is exposed on both Kubernetes cluster:

kubectl get svc -n kafka kafka-meshgateway
NAME                TYPE           CLUSTER-IP      EXTERNAL-IP                                                                PORT(S)                                                           AGE
kafka-meshgateway   LoadBalancer   10.10.171.247   a7c265ab846c14f8fa082773fee7c0da-2063154997.eu-north-1.elb.amazonaws.com   19090:31645/TCP,19091:32240/TCP,19092:32483/TCP,29092:30681/TCP   61m
kubectl get svc -n kafka kafka-meshgateway
NAME                TYPE           CLUSTER-IP      EXTERNAL-IP     PORT(S)                                                           AGE
kafka-meshgateway   LoadBalancer   10.10.161.160   51.124.19.105   19090:32651/TCP,19091:31402/TCP,19092:30403/TCP,29092:31586/TCP   57m

Use kafkacat to produce and consume messages from/to our testtopic topic.

kafkacat -b a7c265ab846c14f8fa082773fee7c0da-2063154997.eu-north-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -P -t testtopic

kafka1: message 1
kafka1: message 2
kafkacat -b 51.124.19.105:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -P -t testtopic

kafka2: message 1
kafka2: message 2

Check replicated messages 🔗︎

Check that MirrorMaker replicated messages from testtopic from kafka1 to kafka2 under kafka2.testtopic topic:

kafkacat -b a7c265ab846c14f8fa082773fee7c0da-2063154997.eu-north-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka2.testtopic -c2
kafka2: message 1
kafka2: message 2
kafkacat -b 51.124.19.105:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka1.testtopic -c2
kafka1: message 2
kafka1: message 1

The summary of what we are seeing:

+-- kafka1
|   +-- testtopic
|       +-- kafka1: message 1
|       +-- kafka1: message 2
|   +-- kafka2.testtopic
|       +-- kafka2: message 1
|       +-- kafka2: message 2
+-- kafka2
|   +-- testtopic
|       +-- kafka2: message 1
|       +-- kafka2: message 2
|   +-- kafka1.testtopic
|       +-- kafka1: message 1
|       +-- kafka1: message 2

Simulate a cluster loss 🔗︎

  1. Delete the Kubernetes cluster running in AWS in the eu-north-1 region (pke-aws-kafka-eun1). This Kubernetes cluster hosts the Kafka cluster kafka1.

  2. Create a new one pke-aws-kafka-euw1 in the eu-west-1 region.

  3. Wait until the new Kubernetes cluster is ready.

  4. Install Supertubes on the new cluster, by following the installation guide.

    supertubes install --root-cert=root-cert.pem --ca-cert=ca-cert.pem --ca-key=ca-key.pem -a --no-demo-cluster -c {pke-aws-kafka-euw1-kubeconfig.yaml}

  5. Create a Kafka cluster that we will refer to as kafka1-new in the MirrorMaker2 descriptor.

    supertubes cluster create --namespace kafka -c {pke-aws-kafka-euw1-kubeconfig.yaml} -f https://raw.githubusercontent.com/banzaicloud/kafka-operator/master/config/samples/kafkacluster-with-istio.yaml

  6. Wait until the Kafka clusters becomes operational

    supertubes cluster get --namespace kafka --kafka-cluster kafka -c {pke-aws-kafka-euw1-kubeconfig.yaml}
    Namespace  Name   State           Image                         Alerts  Cruise Control Topic Status  Rolling Upgrade Errors  Rolling Upgrade Last Success
    kafka      kafka  ClusterRunning  banzaicloud/kafka:2.13-2.4.0  0       CruiseControlTopicReady      0                       2020-03-04 16:42:34

  7. Create a topic named testtopic in the new Kafka cluster.

    supertubes cluster topic create --namespace kafka --kafka-cluster kafka -c {pke-aws-kafka-euw1-kubeconfig.yaml} -f -<<EOF
    apiVersion: kafka.banzaicloud.io/v1alpha1
    kind: KafkaTopic
    metadata:
      name: testtopic
    spec:
      name: testtopic
      partitions: 3
      replicationFactor: 2
      config:
        "retention.ms": "28800000"
        "cleanup.policy": "delete"
    EOF

  8. Update the MirrorMaker2 topology descriptor to make it aware of the new kafka1-new Kafka cluster.

    supertubes mm2 deploy -f -<<EOF
    # list of Kubernetes config file paths of clusters hosting our Kafka clusters that we want to make MM2 deployments aware of
    kubernetesConfigs:
      - {pke-aws-kafka-euw1-kubeconfig.yaml}
      - {pke-azure-kafka-weu-kubeconfig.yaml}
    
    # list of Kafka clusters to make MM2 deployments aware of
    kafkaClusters:
      - namespace: kafka
        name: kafka
        kubernetesConfigContext: kubernetes-admin@pke-aws-kafka-euw1
        alias: kafka1-new # name MM2 refers to this Kafka cluster to
        internalListenerName: internal # name of the Kafka cluster internal listener local MM2 instance to use
        externalListenerName: external # name of the Kafka cluster external listener remote MM2 instances to use
      - namespace: kafka
        name: kafka
        kubernetesConfigContext: kubernetes-admin@pke-azure-kafka-weu
        alias: kafka2 # name MM2 refers to this Kafka cluster to
        internalListenerName: internal # name of the Kafka cluster internal listener local MM2 instance to use
        externalListenerName: external # name of the Kafka cluster external listener remote MM2 instances to use
    
    mirrorMaker2Properties: |-
      # replication topologies and flows, mm2 config, etc.
      kafka1-new->kafka2.enabled=true
      kafka2->kafka1-new.enabled=true
    
      sync.topic.acls.enabled=false
    EOF

  9. Write messages to this testtopic topic.

  10. Verify that all messages from the lost kafka1 cluster are replicated from the backup kafka2 cluster to the newly created kafka1-new replacement Kafka cluster.

    kubectl get svc -n kafka kafka-meshgateway
    NAME                TYPE           CLUSTER-IP      EXTERNAL-IP                                                               PORT(S)                                                           AGE
    kafka-meshgateway   LoadBalancer   10.10.235.122   abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com   19090:30870/TCP,19091:32756/TCP,19092:30961/TCP,29092:31455/TCP   25m
    kafkacat -b abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -P -t testtopic
    
    kafka1-new: message 1
    kafka1-new: message 2
  11. Now let’s see what topics and messages we have on our old kafka2 and the newly created kafka1-new Kafka cluster.

    kafka2:

    kafkacat -b 51.124.19.105:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t testtopic -c2
    kafka2: message 1
    kafka2: message 2
    
    kafkacat -b 51.124.19.105:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka1.testtopic -c2
    kafka1: message 1
    kafka1: message 2
    
    kafkacat -b 51.124.19.105:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka1-new.testtopic -c2
    kafka1-new: message 2
    kafka1-new: message 1

    kafka1-new:

    kafkacat -b abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t testtopic -c2
    kafka1-new: message 1
    kafka1-new: message 2
    
    kafkacat -b abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka2.testtopic -c2
    kafka2: message 1
    kafka2: message 2
    
    kafkacat -b abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com:29092 -X security.protocol=SSL -X ssl.ca.location=cert_chain.pem -X ssl.certificate.location=client.pem -X ssl.key.location=client.key -C -t kafka2.kafka1.testtopic -c2
    kafka1: message 2
    kafka1: message 1

Summary 🔗︎

The summary of what we are seeing:

+-- kafka1-new
|   +-- testtopic
|       +-- kafka1-new: message 1
|       +-- kafka1-new: message 2
|   +-- kafka2.testtopic
|       +-- kafka2: message 1
|       +-- kafka2: message 2
|   +-- kafka2.kafka1.testtopic
|       +-- kafka1: message 1
|       +-- kafka1: message 2
+-- kafka2
|   +-- testtopic
|       +-- kafka2: message 1
|       +-- kafka2: message 2
|   +-- kafka1.testtopic
|       +-- kafka1: message 1
|       +-- kafka1: message 2
|   +-- kafka1-new.testtopic
|       +-- kafka1-new: message 1
|       +-- kafka1-new: message 2

We got all the messages from the lost kafka1, kafka2 and the new kafka1-new clusters on both kafka2 and kafka1-newclusters.

If you are using a client capable to read multiple topics, such as kafka-console-consumer than you can query all messages that were written to testtopic.

kafka-console-consumer.sh --bootstrap-server 51.124.19.105:29092 --whitelist .*testtopic --consumer.config client-ssl.properties --from-beginning --max-messages=6
kafka2: message 2
kafka1: message 1
kafka1-new: message 2
kafka2: message 1
kafka1: message 2
kafka1-new: message 1
Processed a total of 6 messages
kafka-console-consumer.sh --bootstrap-server abee2dfdb54dc485e8449b776a649377-1677360459.eu-west-1.elb.amazonaws.com:29092 --whitelist .*testtopic --consumer.config client-ssl.properties --from-beginning --max-messages=6
kafka1-new: message 2
kafka2: message 2
kafka1: message 2
kafka1-new: message 1
kafka2: message 1
kafka1: message 1
Processed a total of 6 messages

Other supported use cases 🔗︎

In this post we presented a disaster recovery solution based on MirrorMaker2 active/active, active/passive topology setup, however, MirrorMaker2 is not limited only to this use case. Other use cases such as fan-out, aggregation, or cluster migration can be implemented as well, and Supertubes supports all these use cases.

About Supertubes 🔗︎

Banzai Cloud Supertubes (Supertubes) is the automation tool for setting up and operating production-ready Kafka clusters on Kubernetes, leveraging a Cloud-Native technology stack. Supertubes includes Zookeeper, the Banzai Cloud Kafka operator, Envoy, Istio and many other components that are installed, configured, and managed to operate a production-ready Kafka cluster on Kubernetes. Some of the key features are fine-grained broker configuration, scaling with rebalancing, graceful rolling upgrades, alert-based graceful scaling, monitoring, out-of-the-box mTLS with automatic certificate renewal, Kubernetes RBAC integration with Kafka ACLs, and multiple options for disaster recovery.